Tumor and Stem Cell Biology Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial a5 Integrin

نویسندگان

  • Ying Cao
  • Luke H. Hoeppner
  • Steven Bach
  • Guangqi E
  • Yan Guo
  • Enfeng Wang
  • Jianmin Wu
  • Mark J. Cowley
  • David K. Chang
  • Nicola Waddell
  • Sean M. Grimmond
  • Andrew V. Biankin
  • Roger J. Daly
  • Xiaohui Zhang
  • Debabrata Mukhopadhyay
چکیده

Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional nonkinase receptor for semaphorins, vascular endothelial growth factor (VEGF), and other growth factors, expressed on cancer cells interacts with a5 integrin on endothelial cells to mediate vascular extravasation and metastasis in zebrafish and murine xenograft models of clear cell renal cell carcinoma (RCC) and pancreatic adenocarcinoma. In tissue from patients with RCC, NRP-2 expression is positively correlated with tumor grade and is highest in metastatic tumors. In a prospectively acquired cohort of patients with pancreatic cancer, high NRP-2 expression cosegregated with poor prognosis. Through biochemical approaches as well as Atomic Force Microscopy (AFM), we describe a unique mechanism through which NRP-2 expressed on cancer cells interacts with a5 integrin on endothelial cells to mediate vascular adhesion and extravasation. Taken together, our studies reveal a clinically significant role of NRP-2 in cancer cell extravasation and promotion of metastasis. Cancer Res; 73(14); 4579–90. 2013 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuropilin-2 Promotes Extravasation and Metastasis by Interacting with Endothelial a5 Integrin

Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional n...

متن کامل

Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin.

Metastasis, the leading cause of cancer death, requires tumor cell intravasation, migration through the bloodstream, arrest within capillaries, and extravasation to invade distant tissues. Few mechanistic details have been reported thus far regarding the extravasation process or re-entry of circulating tumor cells at metastatic sites. Here, we show that neuropilin-2 (NRP-2), a multifunctional n...

متن کامل

Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis

VEGF is unique among angiogenic growth factors because it disrupts endothelial barrier function. Therefore, we considered whether this property of VEGF might contribute to tumor cell extravasation and metastasis. To test this, mice lacking the Src family kinases Src or Yes, which maintain endothelial barrier function in the presence of VEGF, were injected intravenously with VEGF-expressing tumo...

متن کامل

The Primacy of β1 Integrin Activation in the Metastatic Cascade

After neoplastic cells leave the primary tumor and circulate, they may extravasate from the vasculature and colonize tissues to form metastases. β1 integrins play diverse roles in tumorigenesis and tumor progression, including extravasation. In blood cells, activation of β1 integrins can be regulated by "inside-out" signals leading to extravasation from the circulation into tissues. However, a ...

متن کامل

Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation.

Cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTDs), can mediate the cellular uptake of a wide range of macromolecules including peptides, proteins, oligonucleotides, and nanoparticles, and thus have received considerable attention as a promising method for drug delivery in vivo. Here, we report that CPP/PTDs facilitate the extravasation of fused proteins b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013